
1

Creating mBlock Extensions

by Wang Yu, Product Manager at Makeblock

2Creating mBlock Extensions

How Extensions Work

Extensions allow custom blocks for mBlock. You can use
extensions to support third-party Arduino sensors or
other robotic products such as Lego or LittleBits.

Anybody can write extensions for mBlock. This makes
mBlock an awesome platform for every types of
hardware-related programming.

Every block in mBlock has two modes: Scratch Mode
and Arduino Mode. It’s important to know their
difference before writing extensions.

Scratch Mode and Arduino Mode

> Scratch Mode
In Scratch Mode, the
robot or Arduino board
must be connect to
the computer in order
to run the program. You
can use Scratch blocks to
create graphics or make
games.

- Arduino Mode
In Arduino Mode, the
program is uploaded
into the robot and the
robot is run on its own.
However, you cannot use
graphics from Scratch
since the computer is no
longer there.

use Edit/Arduino Mode menu item to
toggle between Scratch and Arduino
modes

this “Say” block can only be used in
the Scratch mode; while the “(Repeat)

Forever” block can be accessed in
both modes.

Creating mBlock Extensions 3

Using the Extension Manager, you can browse
extensions, find one you want, and get the blocks
included in the extension with a single click.

The following instructions shows how to add an
extension to mBlock.

Using an Extension

Use the menu item “Extensions”, “Manage
Extensions” to open up the Extension
Manager.

You may search for extensions with the
search box. Click “Download” at the right of
the table item to download the extension.
Internet connection is required.

The extension you downloaded will show up
in the “Robots” group of mBlock.

1

2

3

Extensions you can
download from the Internet

Extensions installed in this computer. You may
upgrade or remove those extensions

Read more information from
the author’s webpage

Click here to
download

Install an
extension from
a zip file in your
computer

These blocks come from
the “Demo” extension I
just downloaded

Creating mBlock Extensions 4

Writing an extension is not as hard as it seems. Mostly it
is done by editing some text files. Arduino knowledge
is required in implementing the Arduino Mode, while
Javascript is used in the Scratch Mode. You may skip one
of the modes, and the block will simply not work in that
mode.

Here’s a list of things extension writers need to do:
• Write basic information, such as the name and author
• Define how the blocks look like
• Tell mBlock how to generate the Arduino code
• Write the functions run in the Scratch mode
• Include additional Arduino header / C files.

Writing an Extension

Every extension is a .zip file compressed from a folder.
Here is the folder of the “Demo” extension when
unzipped:

The File Structure of an Extension

.s2e file: basic description, blocks
definition of the extension, and the
Arduino code generated by the
extension in the Arduino Mode. “s2e”
stands for “Scratch 2 extension” files

“src” folder is for additional files
included in the Arduino mode. You
may skip this if you don’t use additional
libraries

Javascript code that run on the
Scratch Mode stays in the “js”
folder

Source code of existing extensions are always the best resource
in writing extensions. In mBlock, you can always view the source
code of existing extensions through the Extension Manager.

“View Source” will bring up a window of that extension’s folder.
You may try to change the extension code and it will take effect in
the next time mBlock is launched (this is one way of debugging).
However, any changes made here will be discarded when
upgrading mBlock or running the “clear cache” command.

Tips

Click here to view the source
code of any existing extension.

Creating mBlock Extensions 5

Download the “Demo” extension as a starting point at:
 http://www.mblock.cc/site-images/Demo.zip

The next step is editing the s2e file. You need a text
editor. the Notepad program is fine, but I recommend
editors dedicated for code editing, such as Github
Atom, Visual Studio Code, Brackets, or Sublime text.

At the beginning of the .s2e file lies some basic
information. You need to tell the user what does the
extension do and who wrote it. Here is the starting lines
of demo.s2e:

Filling out Basic Information1

name your extension
the purpose of the extension.
It shows up in the extension
managerversion number, in forms

of x.y.z. It is used in
updating the extension

your name, and email
address

Basic information

Block definition

Menu definition

How menu items are
transformed into numerical

values in the Arduino Mode

Translations

A web page to read more
about the extension Location of the Javascript

file for Scratch mode

The order of the extension when
show up with multiple extensions

“firmware” and
“extensionPort” are not
used, just leave it be

Tips
the .s2e file is the main file of the extension. Aside from the basic
information, it defines blocks, tells mBlock how the dropdown
menus look like, and how to translate the extension to another
language (if you want to).

If you are familiar with Javascript, you may notice it is written in a
plain JSON (JavaScript Object Notation) object.

Creating mBlock Extensions 6

Defining Blocks2

the “blockSpecs” section tells mBlock how blocks look
like, and gives clues on how they behave in Scratch and
Arduino mode.

Every block is described
in a Javascript Array form

/ Block Types are indicated by a single letter:

/ The text that appears on the blocks
words begin with “%” are parameters - “slots” that users can fill up by typing or with
other blocks. This block (“digitalWrite(%n , %d.digital)”) looks like:

Other parameter types include:

“h” stands for “header blocks”; they are rarely used in
custom extensions.

“w” stands for “write blocks”; they send commands to
the hardware and do not expect a response.

%n gives a round slot for numbers, and will
give a number in the Arduino Mode.

%d.name gives a round dropdown box, and will give a
number in the Arduino Mode. The dropdown’s content is
defined in the “menus” section and identified by name.

%s gives a rectangular hole for
strings

%m.name gives a rectangular
dropdown box for strings

%c gives a color picker

“r” is for “reading blocks”; in Scratch Mode, it waits
the function to return a value; “R” is for asynchronous
reading - the value is not returned by the function but
told later (“callback”) through a function in Javascript.

“r” and “R” looks the same and have no difference in
the Arduino mode.

“b” is for “binary blocks”; they return a binary yes-or-
no value. Similarly, “B” is for asynchronous reading of
binary values

Creating mBlock Extensions 7

Making Menus

Finishing Up the Block Definition

3

4

the “digitalWrite” block has a convenient menu for
selecting HIGH or LOW output. It is defined in the
following way:

“%d.digital” means menu information is stored in the
“digital” list of the menus section

give a Javascript function name
to use in the Scratch Mode

this means the menu has two options:
“HIGH” and “LOW”

give default values to the
block you just defined

in Arduino mode, “HIGH” generates a
value of 1 and “LOW” generates 0. This
does not affect the Scratch Mode.

Creating mBlock Extensions 8

Arduino Code Generation5

When defining each block, .s2e file also decides how
Arduino code is generated, following rules below:

insert include
statements

define variables

insert once in the
setup() function

insert once in the
loop() function

if you included other source
files, be sure to copy them to
the “src” folder

can appear many times
when the block is used

{0} means the first
parameter, “9” in this case

Creating mBlock Extensions 9

Coding Scratch Mode6

The Javascript file is pretty long. I recommend take the
demo.js and only make necessary changes. If your extension
does not support Scratch Mode, skip this part.

define your own variables here

setup code for the extension

file name
must match

send bytes via the serial ports
using an array of bytes

this is called every time the computer
receives bytes from serial ports

write code for your
blocks here

demo.s2e

demo.js

(at the end of) demo.js

demo.s2e
don’t change

trace(string) function is really useful for
debugging because it produces logs in the
Arduino Mode panel.

change this to the name of your extension.

function name
defined here

Creating mBlock Extensions 10

After you are satisfied with the extension, zip it into a
.zip file. In MacOS, right click the folder and choose
“Compress xxx...”; in Windows, right click the folder
and choose “Send To”, “Compressed (zipped) folder”.

Then you may import the extension through the “Add
Extension” button in the Extension Manager. But It’ll be
easier for the users if the extension is uploaded to the
Online Extension Center.

Publishing Your Extension

Go to the extension center website:
 http://www.mblock.cc/extensions/

And click “Sign-in with Github”. If you don’t have Github
account, you need to register one.

After Signing in, drag your .zip file to the large box (or
click the large box to choose with a file browser)

Sign in with your Github account

Congratulations! You’ve uploaded an extension and
contributed to the world mBlock community!

Upload your extension

1

2

Click here to
sign-in

Drag your .zip
file here

If you want to update your extension, simply upload a .zip file with
a higher version number. And you’re all set.

Makeblock, the company maintaining mBlock, reserves every right
to remove an extension, with or without explanation. But we do
welcome extensions of every kind from every product and hope
we only moderate spam (like one with the name “test123”) and
those with improper content. Simply use your common sense.

Tips

Tips

